
Journal of Statistical Physics, Vol. 48, Nos. 5/6, 1987 

Aggregation Kinetics for a One-Dimensional 
Zero-Degree Kelvin Model of 
Spinodal Decomposition 

Yves Elskens 1'2 and Harry L. Frisch a 

Received March 24, 1987 

We study analytically the approach to equilibrium in a simple zero-temperature 
model for phase separation in a binary alloy, in which nearest neighbor 
interchange can occur only if the portion of AB bonds is thereby decreased. The 
approach to equilibrium is found analytically. Because of the existence of 
infinitely many possible stationary states, the asymptotic distribution of AB 
pairs depends on the details of the initial state and must be obtained by a 
recursion method. 
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1. I N T R O D U C T I O N  

In this paper we study the time-dependent kinetics of a one-dimensional 
model for spinodal decomposition at 0 K (1-4) on a lattice whose atoms 
exchange in nearest neighbor pairs independently, with an exponential 
waiting time distribution. The asymptotic long-time behavior of such 
models was studied by a numerical Monte Carlo method by Reich and 
co-workers ~1'2) mainly for cubic lattices in d =  1-5, and by Pahner and 
Frisch (3) analytically in d =  1 and numerically for an infinite-dimensional 
limit of this model. The model is formulated as a computer game whose 
evolution to its final stationary state is strongly dependent on its initial 
state; its dynamics is described by the following Monte Carlo procedures: 
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1. Generate a sequence of atoms of species A and B (on a ring of 
length N or on the infinite line). 

2. Select a nearest neighbor pair of atoms at random and exchange 
them if the exchange results in enrichment of "good" (AA or BB) 
nearest neighbor pairs. 

3. Repeat step 2 until no pair allows for possible enrichment. 

This model may be considered to mimic spinodal decomposition in 
d~< 3 and to correspond to a special case of a kinetic aggregation process 
("coagulation") in d =  1. In Ref. 4, the approach to equilibrium was studied 
numerically and compared to a mean-field theory, in dimension d = 2 and 
on a fractal lattice. 

In Section 2, we describe the evolution of this one-dimensional game 
to its stationary state; we briefly comment on some generalizations in our 
concluding remarks (Section 3). 

2. E V O L U T I O N  A N D  THE S T A T I O N A R Y  STATE 

Let us denote by X,, a sequence of n atoms of the same species (n A's 
or n B's), and by Y, a sequence of n atoms of alternating species. Any 
sequence of A's and B's is then uniquely (up to substituting all A's and B's) 
described by a sequence of the form (X,,, Y,~,), i e Z, with ni~> 2 and mi >~ 0 
to avoid ambiguities. For instance, 

...AABABBBAAA . . . . . . .  X2 Y2X3 YoX3... 

The fundamental observation is that no atom in a sequence X,, can be 
exchanged with its neighbor: X,~ thus acts as a barrier to the migration of 
atoms, and the only evolution occurs inside sequences Y,. Moreover: 

1. Y0 is only a notation for the separation between two "pure 
phases" (X m YoXq = XmXq). 

2. Xm YI Xq cannot evolve further. 

3. XmY2Xq can only produce Xm+ 1YoXq+I. 

4. X,,, Y,,X,, can evolve in n - 1 equally likely ways: 

Xrn+ 1 YoX2 Y,,- 3Xq 
XmY, Xq-+ XmYpXzYoX2Y,_a_pX q ( 0 V p ~ n - 4 )  (1) 

Xm Y~ _ 3 X2 Yo Xq + 1 

The stationary state is thus a sequence of X,'s, Y0's, and Y!'s; Y~ 
ultimately generates only Yo's, Yl's, and X2's and may add one atom to its 
left and right neighboring X-sequences. 
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The degree of phase separation in our model may be measured by the 
fraction p(t) of "bad" bonds (A-B). Let us denote by x~(t) [resp. y~(t)] the 
number o fbad  bonds at time t associated to a sequence of atoms initially 
in the state X, (resp. Y,,); to be definite, we consider that a bond between 
two distinct sequences (X-Y) belongs to the Y-sequence: 

y.(t) <~ y,,(O) = n + 1 
(2) 

x , , ( t )  = x~(O) = 0 

The total fraction of bad bonds in a chain of N atoms is then 

' i p( t ) - -N_  ~ y,,(t) f,,(0) (3) 
tl=O 

where f,,(0) is the initial number of sequences of type Y,. 
The actual expression for y,(t) depends on the dynamics of the atom 

exchange process. For a large ring of atoms (and for the infinite line), the 
continuous-time version amounts to letting each bond wait a time At 
before choosing it to try performing the exchange; the time At has an 
exponential distribution with expectation r (which we set to unity for 
simplicity). This implies the following relation between the average values 
g,,(t) of y,,(t): 

)7,,(t) = y,,(0) e -( ' ' -  x), 

fo 1 ,~- 3 + e-I"- ' l~ ~ [ f~p( t -O)+l+.~ , , -p -4 ( t -O)] (n -1 )  dO 
n - l p = _ ~  

t n-- 3 

= l + n e - I " - ' ~ ' + f o 2  ~ ~p(t-O)e-("-l~~ (4) 
p = - - I  

where we introduce the notation f i_ l ( t )=  y_l(t)=O, corresponding to the 
addition of an atom to a sequence X.. The Laplace transform of 37.(t) is the 
sum y,,(t) = w, ,-  1 e-*'; ~k=o p~(k) the coefficients satisfy 

n 2 

0 ~ ( n  - I )  = n + l - E p , , ( k )  
k = O  

r - 2) = y.(n - 3) = 0 

n - - 3  

;~"(~) n - k - 1  E y~(k) 
p = O  

2 n - - 3  

~.(o) = 1 + ~ ~Ao) 
n - - l p =  o 

( 5 )  
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These recursion relations are easily solved; they all reduce to the 
third-order difference equation (3~ nu N = ( n -  1) u,_~ + 2u, 3 through an 
adequate change of variables [ u ~ = ~ , + k + x ( k )  for k > 0 ;  u , =  9~+~(0) -1  
for k = 0 ] .  

The stationary state values y , ( ~ )  = )~(0) are [see Ref. 3, where r,  = 
1 + y , , ( ~ ) ]  

y_ l (oo)  =0 ,  y0(oo) = 1, yl(o0) = 2, y2(oO)= 1 ..... 

1 
lira - y,(c~) = 0.4509... 

n ~ o O  n 

(6) 

The coefficients )~n(k) characterize the decay of y , ( t )  to its asymptotic 
value; for the main term ( ~ e  -~) 

~ ( 1 ) = 2 ,  93(1)= 94(1) = 0, ~5(1) = 4/3 .... 

1 
lira - )~,( 1 ) = 0.0996... 

n ~  oo n 

(7) 

For higher terms, it is easily seen that 

2,,+,(k)/r ,(k) = r  1(1)/2 (8) 

The evolution of the sequences Y,, determines the evolution of all 
initial states. For the alternating initial sequences Y~ considered in Ref. 3, 
Eq. (3) reduces to 

p( t )  = lim -1 y , ( t )  (9) 
n ~ ,  co n 

and the average fraction of bad bonds is 

p(t)= ~ ~(k)e-*' (10) 
k = 0  

where 

1 
jfi(k) = lim - y , ,+k(k )  

n ~ o o n  

As indicated above,/5(0) = 4 5 % ,  /3(1)= 10% ..... 
A random mixture of pure-phase clusters can be described by an initial 

state where each a tom is followed with probability 2 by an atom of the 
same species. The fraction of bad bonds then evolves like 



One-Dimensional Spinodal Decomposition 1247 

p(O) = 1 -.~ 

f i ( t )=2  2 ~ ( 1 - 2 )  " + l f . ( t )  
.=o (11) 

~(k)=~2 ~ (~_~),,+1 ~.(k) 
n=0 

as follows from the law of large numbers. For the purely random case 
2 = 1/2, this gives 

p(t) = 0.3630 + 0.0716e-' + 0.0358e-2t + .. .  

3. C O N C L U D I N G  R E M A R K S  

More complicated initial conditions can also be considered: according 
to (3), one only needs to know the initial distribution of alternating 
sequences Y,, (0 ~< n ~< oo) in the sample's initial state. In particular, one 
need not restrict oneself to initial states with equal proportions of A's and 
B's: provided that the initial state contains sequences Y,, n~>2, the 
approach to the stationary state will always be in the form (9), with 
appropriate coefficients ~(k). 

The Markovian nature of the decay process (1) of sequences I7, of 
course suggests an alternative description of the kinetics: if we denote by 
f,(t) the number of sequences Y,, at time t, Eq. (2) also implies 

p(t)=N% 1 ~ (n+l)f,,(t) 
tl~0 

(12) 

The decay process (1) is a birth-and-death process, and its kinetics is 
described by the rate equations 

d 
~ f . =  - ( n -  1 ) f . + 2  ~ L + p §  

p=- - I  

d _  
~ f , = 2  ~ f ,+p+4 ( - l ~ < n ~ < l )  

p = - - i  

(n >~ 2) 

(13) 

where f ~ indicates [cf. Eq. (5)] the number of single atoms added to a 
neighboring sequence X m. Equations (13) refer to the averages f.(t), since 
the evolution of the actual numbers f.(t) is a stochastic process. 

Given an initial distribution (f.),  these equations lead to the 
asymptotic distribution (f,(oe)), - 1 ~< n ~< 1, and to f . (oo) = 0 for any 
n ~> 2. But this asymptotic distribution cannot be computed from the single 
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requirement of stationarity in (13): there are infinitely many stationary 
states (the kinetic model is not ergodic). (3) 

We would therefore not be able to determine the average fraction of 
bad bonds t~(oo) without solving explicitly the evolution equations (13). It 
is then easier to deduce t~(t) and t~(oo) by (3) from the evolution of ~n(t), 
where the convolutions (5) make an explicit use of the hierarchical struc- 
ture (1) associated with the dynamics. Thus it appears that the nonergodic 
nature of the final state-as implied by the dynamics (1)--requires a 
constructive approach to the problem. 
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